Analytical chemistry is the study of the chemical composition of natural and artificial materials. Properties studied in analytical chemistry include geometric features such as molecular morphologies and distributions of species, as well as features such as composition and species identity. Unlike the sub disciplines inorganic chemistry and organic chemistry, analytical chemistry (like physical chemistry) is not restricted to any particular type of chemical compound or reaction.The contributions made by analytical chemists have played critical roles in the sciences ranging from the development of concepts and theories (pure science) to a variety of practical applications, such as biomedical applications, environmental monitoring, quality control of industrial manufacturing and forensic science (applied science).
1. Modern analytical chemistry
Modern analytical chemistry is dominated by instrumental analysis. Many analytical chemists focus on a single type of instrument. Academics tend to either focus on new applications and discoveries or on new methods of analysis. The discovery of a chemical present in blood that increases the risk of cancer would be a discovery that an analytical chemist might be involved in. An effort to develop a new method might involve the use of a tunable laser to increase the specificity and sensitivity of a spectrometric method. Many methods, once developed, are kept purposely static so that data can be compared over long periods of time. This is particularly true in industrial quality assurance (QA), forensic and environmental applications. Analytical chemistry plays an increasingly important role in the pharmaceutical industry where, aside from QA, it is used in discovery of new drug candidates and in clinical applications where understanding the interactions between the drug and the patient are critical.
2. History
Much of early chemistry was analytical chemistry since the questions of what elements and chemicals were present in the world around us and what are their fundamental natures is very much in the realm of analytical chemistry. There was also significant early progress in synthesis and theory which of course are not analytical chemistry. During this period significant analytical contributions to chemistry include the development of systematic elemental analysis by Justus von Liebig and systematized organic analysis based on the specific reactions of functional groups. The first instrumental analysis was flame emissive spectrometry developed by Robert Bunsen and Gustav Kirchhoff who discovered rubidium (Rb) and caesium (Cs) in 1860.
Most of the major developments in analytical chemistry take place after 1900. During this period instrumental analysis becomes progressively dominant in the field. In particular many of the basic spectroscopic and spectrometric techniques were discovered in the early 20th century and refined in the late 20th century. The separation sciences follow a similar time line of development and also become increasingly transformed into high performance instruments. In the 1970s many of these techniques began to be used together to achieve a complete characterization of samples. Starting in approximately the 1970s into the present day analytical chemistry has progressively become more inclusive of biological questions (bioanalytical chemistry), whereas it had previously been largely focused on inorganic or small organic molecules. Lasers have been increasingly used in chemistry as probes and even to start and influence a wide variety of reactions. The late 20th century also saw an expansion of the application of analytical chemistry from somewhat academic chemical questions to forensic, environmental, industrial and medical questions, such as in histology.
en.wikipedia.org
1. Modern analytical chemistry
Modern analytical chemistry is dominated by instrumental analysis. Many analytical chemists focus on a single type of instrument. Academics tend to either focus on new applications and discoveries or on new methods of analysis. The discovery of a chemical present in blood that increases the risk of cancer would be a discovery that an analytical chemist might be involved in. An effort to develop a new method might involve the use of a tunable laser to increase the specificity and sensitivity of a spectrometric method. Many methods, once developed, are kept purposely static so that data can be compared over long periods of time. This is particularly true in industrial quality assurance (QA), forensic and environmental applications. Analytical chemistry plays an increasingly important role in the pharmaceutical industry where, aside from QA, it is used in discovery of new drug candidates and in clinical applications where understanding the interactions between the drug and the patient are critical.
2. History
Much of early chemistry was analytical chemistry since the questions of what elements and chemicals were present in the world around us and what are their fundamental natures is very much in the realm of analytical chemistry. There was also significant early progress in synthesis and theory which of course are not analytical chemistry. During this period significant analytical contributions to chemistry include the development of systematic elemental analysis by Justus von Liebig and systematized organic analysis based on the specific reactions of functional groups. The first instrumental analysis was flame emissive spectrometry developed by Robert Bunsen and Gustav Kirchhoff who discovered rubidium (Rb) and caesium (Cs) in 1860.
Most of the major developments in analytical chemistry take place after 1900. During this period instrumental analysis becomes progressively dominant in the field. In particular many of the basic spectroscopic and spectrometric techniques were discovered in the early 20th century and refined in the late 20th century. The separation sciences follow a similar time line of development and also become increasingly transformed into high performance instruments. In the 1970s many of these techniques began to be used together to achieve a complete characterization of samples. Starting in approximately the 1970s into the present day analytical chemistry has progressively become more inclusive of biological questions (bioanalytical chemistry), whereas it had previously been largely focused on inorganic or small organic molecules. Lasers have been increasingly used in chemistry as probes and even to start and influence a wide variety of reactions. The late 20th century also saw an expansion of the application of analytical chemistry from somewhat academic chemical questions to forensic, environmental, industrial and medical questions, such as in histology.
en.wikipedia.org
Post a Comment